|
Atomistry » Aluminium » Chemical properties » Aluminium hydroxides | ||||||
Atomistry » Aluminium » Chemical properties » Aluminium hydroxides » |
Aluminium hydroxides
Two hydrated oxides of aluminium are found in nature in the crystalline state, namely, diaspore, Al2O3.H2O, which occurs in orthorhombic crystals (holohedral; a:b:c = 0.9372:1:1.6038) of density 3.30-3.45, and hydrargillite (or gibbsite), Al2O3.3H2O, which occurs in fibrous, monoclinic crystals (holohedral; a: b: c = 0.7089:1:1.9184, β = 85°29') of density 2.42. The most important naturally occurring hydrated oxide of aluminium, however, is bauxite, a white, yellowish, red, or brown clay-like, amorphous material originally found at Les Beaux near Aries in the south of France. Bauxite varies widely in composition, and consists of amorphous, colloidal, hydrated alumina (with perhaps a little diaspore and hydrargillite) associated with varying amounts of ferric hydroxide, clay, quartz, sand, etc. It is therefore better regarded as a rock than as a mineral. Formerly, bauxite was regarded as a mineral of the formula Al2O3.2H2O, but most bauxites more nearly approach the ratio Al2O3: H2O than Al2O3:2H2O. Bauxite is a very valuable source of aluminium; it occurs mainly in the department Yar (France), in County Antrim (Ireland), and in the states of Alabama, Georgia, and Arkansas (America).
When excess of ammonium hydroxide is added to an aqueous solution of an aluminium salt, a precipitate is obtained, white, opaque, and amorphous at 100°, transparent and gelatinous at ordinary temperatures. The precipitate has a pronounced tendency to pass into colloidal solution when washed with water. Air-dried in hot weather, its composition corresponds to the formula Al2O3.3H2O or Al(OH)3; dried at 100°, or at the ordinary temperature over concentrated sulphuric acid, the composition is that of a dihydrate, Al2O3.2H2O. The amorphous trihydrate is also obtained by heating an alkali aluminate with ammonium chloride, or by boiling basic aluminium carbonate with water; when an alkali aluminate solution is boiled, the trihydrate slowly separates in a crystalline form. A mono-hydrate, Al2O3.H2O, is said to be obtained by heating amorphous alumina with water in a closed tube to 250°. The amorphous mono- and di-hydrates are very hygroscopic substances, absorbing water with the formation of the trihydrate or normal aluminium hydroxide. At a red heat all the hydrates are converted into alumina. A colloidal solution of aluminium hydroxide was obtained by Crum from aluminium acetate solution. This was heated to obtain a precipitate of basic acetate, and the precipitate dissolved in 200 times its weight of boiling water. The solution was then maintained at 100° for some days, when complete hydrolysis occurred. The liquid was diluted and heated to 100° until all the acetic acid had been volatilised, fresh water being added from time to time. A colourless, tasteless, neutral solution of aluminium hydroxide was thus obtained, readily coagulated by salts and a number of acids, and the gel thus obtained dissolving only in concentrated acids. The solution did not act as a mordant, and when evaporated at 100°, left a residue difficultly soluble in acids. Graham obtained aluminium hydroxide in colloidal solution by dialysing a solution of aluminium chloride saturated with aluminium hydroxide. The colloidal solution so obtained acted as a mordant, and was readily coagulated by acids, bases, and salts to a gel soluble in dilute acids. Colloidal aluminium hydroxide exhibits anodic cataphoresis; it is seen to be a suspension when examined in the ultra-microscope. In the absence of salts, freshly precipitated aluminium hydroxide is perceptibly soluble in ammonia, and much more so in methylamine and other organic bases. It is also readily soluble in acids and alkali hydroxides. When kept under water for several months, it becomes difficultly soluble in acids and alkalies, concentrated sulphuric acid excepted. The naturally occurring hydroxides are not readily attacked by acids. Precipitated aluminium hydroxide assumes a bright red colour, not destroyed by dilute acetic acid, when boiled with water containing a drop or two of 1 per cent, alizarin solution. This test readily distinguishes it from gelatinous hydrated silica. Aluminium hydroxide also forms soluble complex substances with many organic hydroxy-compounds. Further, it enters into combination with many organic colouring matters, producing coloured, insoluble lakes. Upon this property depends the use of aluminium salts as mordants in dyeing. The solubility of aluminium hydroxide in acids is due to the fact that it acts as a weak base and reacts with acids to produce aluminium salts. In the same way, the solubility of aluminium hydroxide in alkali hydroxides is attributed to the feeble acidic character of the hydroxide. It is, in fact, an amphoteric hydroxide. The minute amount of aluminium hydroxide present in aqueous solution in equilibrium with the solid phase must be supposed to dissociate in two ways: - Al••• + 3OH' ⇔ Al(OH)3 ⇔ H• + H2AlO3' (or AlO2' and H2O). The hydroxide is weaker as an acid than as a base, and the affinity constant for the acid dissociation represented above has been estimated to be approximately 1×10-10, i.e. the acid is of the same order of strength as boric acid and its alkali salts must be perceptibly hydrolysed in aqueous solution.
AlCl3 + 3NaOH = Al(OH)3 + 3NaCl Al(OH)3 + NaOH = NaAlO2 + 2H2O and are opposed to the view that colloidal solution occurs to any appreciable extent. Moreover, observations with the ultra-microscope fail to indicate that the solutions are suspension-colloids. The microscopic evidence, however, is not very conclusive. The following hydrated aluminates have been obtained in the solid state, several of them in the crystalline form, by the interaction of aluminium with concentrated alkali hydroxides: - K(AlO2).1.5H2O; Ca2Al2O5.7H2O; Ca3(AlO3)2.6H2O; Na(AlO2).2H2O; Ba2Al2O5.5H2O; Sr3(AlO3)2.6H2O; LiH(AlO2)2.5H2O; Tl4Al2O5.7H2O; Ba3(AlO3)2.7H2O; Ba(AlO2)2.5H2O; Sr(AlO2)2.4H2O? A number of anhydrous, crystalline alluminates occur as minerals; e.g: - Magnesia spinel or spinel ruby - Mg(AlO2)2 Magnesia iron spinel or pleonaste - (Mg,Fe)(AlO2)2 Iron spinel or hercynite - Fe(AlO2)2 Zinc spinel or gahnite – Zn(AlO2)2
A thermal study of the system lime - alumina has shown that four anhydrous calcium aluminates can be obtained, of the formulae 3CaO.Al2O3, CaO.Al2O3, 5CaO.3Al2O3, and 3CaO.5Al2O3. The second and third melt at 1587° and 1387° respectively; the others have no melting-point. The third and fourth compounds are dimorphous. The nature of the equilibrium diagram is indicated in fig. Only one magnesium aluminate has been obtained, namely, spinel, MgO.Al2O3. |
Last articlesZn in 9JPJZn in 9JP7 Zn in 9JPK Zn in 9JPL Zn in 9GN6 Zn in 9GN7 Zn in 9GKU Zn in 9GKW Zn in 9GKX Zn in 9GL0 |
© Copyright 2008-2020 by atomistry.com | ||
Home | Site Map | Copyright | Contact us | Privacy |